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Abstract—We consider the generalized variable-coefficient single component nonlinear Schrödinger system with 

higher order effects such as the third-order dispersion, self-steepening and self-frequency shift, a model equation for the 

propagation of intense electromagnetic field in inhomogeneous optical fibers. For describing the long-distance 

communication, we obtain the optical multi-dark soliton using Hirota‘s bilinearization method. We are able to control the 

characteristics of optical multi-dark solitons in inhomogeneous optical fibers by choosing suitable variable-coefficient 

functions.    

Index Terms — dark solitons; generalized variable-coefficient nonlinear Schrödinger system; Hirota‘s bilinearization 

method; inhomogeneous optical fibers. 

——————————      —————————— 

I. INTRODUCTION 

Recently, the optical solitons have been put to use in the 
long-haul optical communication links and transoceanic 
systems to enhance confidentiality, where the required 
information is finally retrieved by dark-bright soliton 
conversion. Optical solitons are recognized as powerful 
laser pulses, which when propagating through optical 
fibers are influenced by higher order effects such as, 
higher order dispersion, self-steepening, stimulated 
inelastic scattering, and delayed nonlinear response. In 
this paper, we have shown that the characteristics of 
optical multi-dark solitons, dispersion management, and 
soliton amplification are controllable in communication 
lines.  

We consider the integrable generalized variable-
coefficient single component nonlinear Schrödinger 
system with higher order effects such as the third-order 
dispersion, self-steepening and self-frequency shift, as 
follows: 

 

 

 (1) 
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where u(z, t) is the complex envelope of the electrical 
field in the comoving frame, z and t, respectively, 
represent the normalized propagation distance along the 
fiber and retarded time, while all the variable coefficients 
are real analytic functions. a(z) and c(z) denote the group 
velocity dispersion and third-order dispersion, 
respectively. b(z) accounts for the cross-phase 
modulation, while d(z) is the self-steepening and e(z)  is 
related to the delayed nonlinear response effects. The 
term proportional to f(z) results from the group velocity 
and h(z) represents the amplification or absorption 
coefficient. 

The conditions for Eqn.(1) to be integrable were 
determined by the Painlevé singularity structure 
analysis.

[1]
 To derive the multi-dark soliton solutions for 

Eqn (1), we have utilized the integrable case given 
below:   
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Our aim will be to investigate the different forms of 

multi-dark soliton propagation in inhomogeneous 

optical fibers by suitably choosing the variable-

coefficient functions 

II. HIROTA‘S BILINEARIZATION METHOD 

Multi-dark soliton solutions are derived by Hirota‘s 
bilinear method

[2],[3].[4],[5]
, since it is the most successful 

direct technique for constructing exact solutions to 
various non-linear PDEs.  

As the first step, we transform U(z, t) to a quadratic form 
by using the following transformation:  

 

where m(z) and G(z, t)are complex functions and F(z, t) 
is a real one. This new form of Eqn.(1) is written in 
terms of ‗D‘ operator as the combination of variable-
coefficient bilinear equation. 

 

 

 

Where λ(z) is a function to be determined, m(z) 

=  with A≠ 0 as an arbitrary 

complex constant. The binary operators Dz, Dt,  and 

 are defined by 
5
 

 

In the next stage, we assume power series expansion for 
G(z, t) and F(z, t)  

 

 

When substituted to Eqn.(2) & (3), we obtain a system of 
equation at orders of χ which allows for determination of 
its coefficients by recurrence. 

III. MULTI-DARK SOLITON SOLUTIONS 

In sec. II, we have derived the bilinear forms of 

variable-coefficient nonlinear Schrödinger system. In 

this section, we calculate the two- and three- soliton 

solutions. Once the form of two- and three- soliton 

solutions are known, their characteristics reveal the form 

of Higher Order Soliton solutions.  
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Two-Dark Soliton Solution 

In order to construct the dark two-soliton solutions, we 

assume 

 

 

 

Substituting expressions (4) into Eqs. (2) and  (3), and 

then collecting the coefficients of the like power of  χ 

and solving the obtained equations, we have 

 

Where 

 

 

 

and 

 

 

 

 

With 
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where λ(z) = λ0 c(z), with B ≠ 0 as arbitrary complex 

constants, φ0, , , p  and  as arbitrary 

real constants, and . Now 

using the expressions 

and , the dark 

two-soliton solution of system (1) can be written as, 

 

 

 

 

Three-Dark Soliton Solution 

To construct three-dark soliton solution, we assume the 

power series expansion to be 

 

 

Substituting expressions (4) into Eqs. (2) and  (3), and 

then collecting the coefficients of the like power of  χ 

and solving the obtained equations, we have 
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IV. ANALYSIS AND APPLICATIONS 

 

Recently, increased interest in optical dark solitons has 

become connected with their possible application in 

optical logic devices and waveguide optics as dynamic 

switches and junctions. They are also considered for 

signal processing and communication applications 

because of their inherent stability. The influence of 

noise and fiber loss on dark solitons is much lesser than 

that on bright solitons. Motivated by these facts and that 

the obtained solutions include distributed functions, one 

can explain different types of soliton control or 

dispersion management by choosing various forms of 

these functions.  

 

From the expressions of two- and three- dark solitons, it 

is obvious that the soliton amplitude is related to the 

functions c(z) and e(z). So, to keep the amplitude 

invariant, the value of c(z) /e(z) must be a constant. 

Also, the soliton velocity and acceleration are related to 

b(z), c(z), e(z) and f(z),  but not to g(z). In Figs. 1 and 6, 

the parameters are adopted as A = 1+3i, B = 3+4i , r = 5, 

φ0 = 5, λ0 = 380, and p = 2 , while in Figs. 2–5, 

A = −0.5+0.8i, B = 0.6+0.4i,  r = 1, φ0 = 1, λ0 = 0.5785, 

and p  = 0.621 021. When b(z), c(z), e(z) and f(z) are 

taken some constant values, the function  

possesses the traveling wave form and the dark soliton 

propagates stably as seen in Fig. 1. Figures 2–6 clearly 

display the evolution and propagation of the dark soliton 

with the effects of the distributed functions. 
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 Figures 2–3, respectively, illustrate various stable 

propagations of the optical dark solitons in a fiber with 

distinct periodically varying inhomogeneous effects, 

from which we can see different influences of different 

distributed functions. Figures 4–5, under the effects of 

more distributed functions, depict the propagations of 

the optical dark solitons with periodic oscillation along 

the distance z. Compared  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 with other figures, we note that the amplitude of 

the dark soliton moves with periodic growth and decay. 
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FIG. 1. The parameters adopted here are c(z) = 0.1, e(z) 

= 2.5, b(z) = 1 and f(z) = 1.5; (b) is the intensity plot 

corresponding to (a).FIG. 2. The parameters adopted 

here are c(z) = 1, e(z) = 2.5,  b(z) = 1, and  f(z)=1.5 

sin(z);  

 

 

 

 

 

 

FIG. 3 The parameters adopted here are c(z) = 1,              

e(z) = 2.5,  b(z) = 1, and  f(z)=1.5 sin(z);  

 

 

                 

 

 

 

 

FIG.4. The parameters adopted here are c(z) = 2                     

Cos(z), e(z) = Cos(z), b(z) = 0.1 and f(z) = 1;                                                 
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FIG.4. The parameters adopted here are c(z) = 2                     

Cos(z), e(z) = Cos(z), b(z) = 0.1 and f(z) = 1;  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 6. The evolution plot of dark three-soliton solution 

with parameters are c(z) = 0.1, e(z) = 2.5, b(z) = 1 and 

f(z) = 1.5; (b) is the intensity plot corresponding to (a) 

derived from similar expression. 
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V. CONCLUSIONS 

We have investigated that the integrable generalized 

variable-coefficient single component NLS system with 

higher order effects such as the third-order dispersion, 

self-steepening, and self-frequency shift, can be used to 

describe the propagation of intense electromagnetic field 

in multimode, inhomogeneous optical fiber media. We 

have derived the optical multi dark-soliton solutions via 

solving the Hirota‘s bilinear equations. Also, with 

symbolic computations we have showed that we are able 

to control the characteristics of optical multi-dark 

solitons in inhomogeneous optical fibers by choosing 

suitable variable-coefficient functions.    

 

With models appearing in the previous papers
[1],[7]

, it is 

notable that system (1) has three salient features: (i) 

soliton propagation (amplitude, velocity & acceleration) 

depends on b(z), c(z), e(z) and f(z); (ii) related 

coefficients are distributed functions of the variable z 

but not constants, and (iii) several higher order effects 

are included. That is just what makes our investigations 

important. 
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