Detection of Distributed Clone Attacks for Safety Transactions in WSN
Abstract - Wireless sensor Networks (WSNs) are usually deployed in hostile environments wherever associate degree person will physically capture a number of the nodes, first will reprogram, and then, will replicate them in an exceedingly sizable amount of clones, simply taking management over the network. Some distributed solutions to handle this basic drawback are recently projected. However, these solutions don't seem to be satisfactory. First, they are energy and memory demanding: a significant downside for any protocol to be employed in the WSN- resource strained surroundings. Further, they are risk of the particular person models introduced during this paper. The contributions of this work are threefold. First, the desirable properties of a distributed mechanism for the detection of node duplication attacks are examined. Second, the far-famed solutions for this drawback is shown and don't fully meet the required needs. Third, a replacement self-healing, Randomized, Efficient, and Distributed (RED) protocol for the detection of node replication attacks is projected, and it's shown that it satisfies the introduced needs. The novel Implementation specifies that the user can specify its ID, Location ID (LID), Random range (RN), Destination ID (DID) alongside Destination LID, to the Witness Node (WN). The witness can verify the internally finite user ID with the user given ID. If the verification is success, the packets are sent to the destination. A changed RED theme (MRED) is projected to spot biological research attacks within the network.
Distributed protocol, efficiency, node replication attack detection, Wireless sensor networks security, resilience.
Click Here
International Journal for Trends in Technology & Engineering © 2015 IJTET JOURNAL