Archive

Classification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELM
Abstract—This paper proposes the classification of EEG signal for epilepsy diagnosis. Epilepsy is a neurological disorder which occurs due to synchronous neuronal activity in brain. Empirical Mode Decomposition (EMD), Extreme Learning Machine (ELM) are the techniquedelivered in the proposed method.Input EEG signal, which is available in online as Bonn Database is decomposed into five Intrinsic Mode Functions (IMFs) using EMD.Higher Order Statistical moments such as Variance, Skewness and Kurtosis are drawn out as features from the decomposed signals. Extreme Learning Machine is used as a classifier to classify the EEG signals with the taken features, under various categories that include healthy and ictal, interictal and ictal, Non seizure and seizure, healthy, interictal and ictal. The proposed method gives 100%accuracy, 100%sensitivity in discriminating interictal and ictal, non seizure and seizure, healthy and ictal, healthy, interictal and ictal, 100% specificity in classifying healthy and ictal, interictal and ictal and 100% and 99%accuracy in case of discriminating interictal and ictal, non seizure and seizure.
Index Terms—Electroencephalogram(EEG), Empirical Mode Decomposition (EMD), Extreme Learning Machine (ELM), Feature Extraction, seizure detection.
Click Here
International Journal for Trends in Technology & Engineering © 2015 IJTET JOURNAL